Home / Tech News / From corn to cattle, gene editing is about to supercharge agriculture

From corn to cattle, gene editing is about to supercharge agriculture


Agriculture has come a long way in the past century. We produce more food than ever before — but our current model is unsustainable, and as the world’s population rapidly approaches the 8 billion mark, modern food production methods will need a radical transformation if they’re going to keep up. But luckily, there’s a range of new technologies that might make it possible. In this series, we’ll explore some of the innovative new solutions that farmers, scientists, and entrepreneurs are working on to make sure that nobody goes hungry in our increasingly crowded world.

Corn isn’t the sexiest crop but it’s one of the most important. It’s the most abundant grain on Earth, used as food and biofuel around the globe. In ancient times, Mesoamericans thrived on it, waged wars over it. Their myths claimed corn was the matter from which gods created mankind itself.

But, just as corn helped create these civilizations, these civilizations helped create corn through meticulous selective breeding. Today’s grain hardly resembles its ancestors. Compared to the wild plant first cultivated by ancient Mexicans some ten thousand years ago, modern corn is a super mutant.

And yet, after all those thousands of years of cultivation, just two main genes are thought to be responsible for the evolution of the corn we eat today. Selective breeding is painstakingly slow and imprecise.

But that’s all about to change.

Selective breeding is painstakingly slow and imprecise. But that’s all about to change.

New gene editing tools like CRISPR/Cas9 now let scientists hack into genomes, make precise incisions, and insert desired traits into plants and animals. We’ll soon have corn with higher crop yields, mushrooms that don’t brown, pigs with more meat on the bone, and disease resistant cattle. Changes that took years, decades, or even centuries, can now be made in a matter of months. In the next five years you might eat tortilla chips made from edited corn. By 2020 you might drink milk from an edited cow.

Dubbed the “CRISPR Revolution” these scientific advances in gene editing have huge potential that many experts think could help fortify our food system and feed an increasing population of farmers who are threatened by food scarcity caused, in part, by climate change.

But not everyone is so certain. Beyond the contentious legal battles that have thus far complicated CRISPR science, calling into question who can and can’t use the technology, some consumer rights advocates think these tools will be used to maintain the status quo of an industry based primarily on corporate profit. Meanwhile, residual worry about genetically modified organisms (GMOs) may influence the public perception of gene-edited organisms, steering consumers towards the “organic” aisle despite scientific evidence.

What is gene editing?

Gene editing is, simply put, the act of making intentional changes to DNA in order to create an organism with a specific trait or traits. It’s like using a word processor to edit the words in a sentence. Geneticists insist we don’t confuse this with genetic modification (otherwise called genetic engineering), which introduces new genes from different species in order to achieve desired traits. The difference may sound trivial but experts say it could help calm the concerns associated with GMOs.

Consider this simplification. We have the sentence, “The cat has a hat,” but want to be more descriptive about the hat’s color. With modification, we would borrow the German word for black and write, “The cat has a schwarz hat.” The sentence makes sense (sort of) but it’s obvious that to some people it would be problematic and maybe even an improper use of language. With editing, we don’t have to borrow a word from another language. We instead just insert the English word and write, “The cat has a black hat.”